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Abstract

A vector time series is coupled with both the Generalized Autoregressive Conditional Heteroskedastic (GARCH)
model and an impact response analyses of the multiple time series Vector Autoregressive Moving Average
(VARMA) model in this research to investigate the time series variation of organic pollution factors. The analyses
target three organic pollution factors, that is, dissolved oxygen (DO), biochemical oxygen demand (BOD), and
ammonia nitrogen (NH3-N), for understanding their time series influence pattern and responses among the
various water quality parameters. After model matching of the many vectors, the optimal matching model
combination, VARMA(1,0,1)–GARCH(1,1), was selected for depicting the time series dependence of the selected
pollutant factors. Results of impulse response analyses reveal that BOD responds immediately to changes of
current DO and that the consumption of DO is not obvious during the initial stage of NH3-N decomposition.
During the one time lag period, NH3-N is further oxidized into nitrite and nitrate to cause obvious increase of
DO consumption. In this article, the statistical technology is used to develop the VARMA–GARCH integration
model for simulating and predicting the water quality using data collected in the watershed of northern Taiwan.
Therefore, the internal mechanism and the significance represented by the process of constructing the model can
be expanded. The model proposed in this research will allow the user to grasp the instantaneous changes of the
time series water quality in the watershed. Results will provide valuable references for the water quality
authority to implement timely and effective water management measures in response to changes of water
quality.
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Introduction

During past decades, many research efforts have been
devoted to developing various conditional variance

models. The most popular models are those studying whether
the risk premium and financial assets of foreign exchange
market with price variables. Because these phenomena have
high degree of volatility with variances, they exhibit the
characters of heterogeneity as time passes. When applied in
environmental engineering and hydraulic engineering re-
search, the process is simplified by assuming homogeneity of
variance. All variables in the conventional verification meth-
ods are considered to be constants so that the variables that
have conditional heterogeneity cannot be controlled. Engle

(1982) proposed an Autoregressive Conditional Hetero-
skedastic (ARCH) model in which conditional variables are
no longer assumed to be fixed constants but a linear function
of the square of disturbance to achieve a breakthrough in
verification methods.

The Generalized Autoregressive Conditional Hetero-
skedastic (GARCH) model has been popularly applied in the
field of economic (Bollerslev, 1986) and environmental de-
velopment and environmental science. Hubbard and Co-
bourn (1998) used a 10-parameter multiple linear regression
model to predict daily domain level peak O3 and found that
50% of the forecasts are within – 7.6 ppb and 80% of the ac-
curacy was within – 14.8 ppb. Slini et al. (2002) applied auto-
regressive integrated moving average (ARIMA) to maximum
ozone concentration forecasts in Athens, Greece, for the
analysis of a 9-year air quality observation record. Results
show a good index of agreement, accompanied by a weakness
in forecasting alarms. Cobourn (2007) applied Takagiesugeno
fuzzy system and a nonlinear regression model and reported
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their performance. In addition, specific modifications and/or
applications of the basic GARCH model in a wide variety of
fields have been published in literature; they are known as
TGARCH, AGARCH, NGARCH, GJR–GARCH, EGARCH,
FIEGARCH, HYGARCH, TSGARCH, MSGARCH, etc. Ex-
cept those relevant to this study, they will not be referenced
and discussed in this article. Surgailis and Viano (2002)
studied the covariance structure and dependence properties
of the EGARCH and some related stochastic volatility
models. McAleer (2005) used the specific-to-general meth-
odological approach that is widely used in science, in which
problems with existing theories are resolved as the need
arises, to illustrate a number of important developments in
the modeling of univariate and multivariate financial vola-
tility. Ling and McAleer (2003) investigated the asymp-
totic theory for a vector autoregressive moving average
(VARMA)–GARCH model. Tansuchat et al. (2009) studied
volatility spillovers between crude oil future returns and oil
company stock returns by using the recent multivariate
GARCH model. Hoti et al. (2005a) analyzed empirically the
time-varying conditional variance (or risk) associated with in-
vesting in leading sustainability-driven firms using multivari-
ate models of conditional volatility. Hoti et al. (2005b) analyzed
the trends and volatility in atmospheric carbon dioxide con-
centration (ACDC) levels using daily data collected at two
observatory stations, that is, Ryori ( Japan) and Mauna Loa
(Hawai‘i, USA). The conditional variance of ACDC levels was
analyzed using three multivariate GARCH models, namely
constant correlation (CCC), VARMA–GARCH, and VARMA–
AGARCH. These models are capable of capturing the dy-
namics in the conditional variance and the spillover effects in
the volatility of ACDC levels across the two observatory sta-
tions. Hoti et al. (2008) investigated the presence and impor-
tance of multivariate effects in conditional volatility in two
major financial time-series indexes, the Dow Jones Sustain-
ability Index World and the Ethibel Sustainability Index
Global, as a way to analyze their relative inherent risk.
Serletis and Shahmoradi (2006) specified and estimated a
multivariate GARCH–M model of natural gas and electricity
price changes and tested for causal relationships between
natural gas and electricity price changes and their volatilities.

The above review shows that the GARCH model has been
extensively applied in the study of economic market. Water
quality variables have similar high degree of variability
among themselves as the various variables in the economic
market so that the GARCH model will be suitable for
studying the water quality problems. When the information
of second moment is completely revealed and controlled,
and the model is further coped with vector model test re-
sults, the most appropriate model for environmental appli-
cation can be developed. Hence, the mutual dependence
among the various pollution parameters and predictions of
the various water quality variables can be fully explained.
This study analyzes the time series water quality data col-
lected at the six water quality monitoring stations located in
an important watershed in northern Taiwan. The watershed
with a total area of 303 km2, which covers all Pinglin District
and portions of Shuangxi District, Shiding District, and
Xindian District of New Taipei City, is about 30 km to Taipei.
Feitsui reservoir, which is second largest reservoir in Taiwan
with a capacity of 406 million m3, is located at the upstream
of Shixi stream that flows into Xindian stream and receives

the effluents from six tributary streams flowing through the
watershed. It has been developed with a single objective to
provide water supply to residents of Taipei municipality; it is
also the only reservoir in Taiwan with protected water
sources. In addition to providing water, the reservoir also
forms an important ring of north Taiwan Tamsui river flood
protection chain. If not interfering with the functions of
supplying water and controlling flood, the reservoir is also
used for generating electricity. The water quality is superior
to that in other reservoir in Taiwan. However, some land
located in the valley and hillside had been cultivated to grow
tea, rice, and fruit before the reservoir was constructed.
Nonpoint pollutions caused by the surface runoff containing
pesticides and fertilizers become a potential threat of the
reservoir water quality. Figure 1 shows the geographic lo-
cation of Feitsui reservoir in north Taiwan.

In addition, the principle component analysis method has
been carried out to analyze the most obvious organic pollu-
tion factors (i.e., DO, BOD, and NH3-N) using the VARMA
model as the primary model. Hence, the correlation among
various organic pollution factors can be examined to
strengthen the correlation analyses of the various water
quality parameters so that the time-dependent mutual influ-
ence of the these water quality parameters and the final im-
pact can be investigated. There has not been any literature
published in international journals on similar GARCH ap-
plications in environmental engineering for studying the time
series variation of water quality parameters and the mutual
reactions among these parameters. In this article, the statisti-
cal technology is used to assist in developing models for
simulating and predicting the water quality in the watershed
of northern Taiwan; the evaluation will include the test, ex-
amination, and analyses. In addition, the results obtained
using the multiple statistical analyses are discussed. Because
of the article length limitation, the concept and methodology
of multivariate statistical method will not be covered in this
article.

Methodology

ARMA modeling

A time series {xt; t = 0, – 1, – 2,.} is ARMA( p,q) if it is co-
variance stationary and can be represented as (Shumway and
Stoffer, 2006)

xt¼/1xt� 1þ . . . þ/pxt� pþ etþ h1et� 1þ . . . þ hqet� q (1)

with /ps0, hqs0, and et are the innovations with N(0, r2
e ) and

r2
e > 0. The parameters p and q are called the autoregressive

[AR( p)] and the moving average [MA(q)] orders, respectively.
When a time series does not appear covariance stationary, the
differencing procedure may be applied to make it stationary.
Then, the ARMA( p,q) model can be applied to the stationary
differenced time series and the model so constructed is called
ARIMA( p,d,q) model, where d denotes the order of differen-
cing (Brockwell and Davis, 2002; Shumway and Stoffer, 2006).
The parameters p and q have been estimated using maximum
likelihood method (Brockwell and Davis, 2002) in the present
study.

An inspection of autocorrelation function (ACF) and partial
autocorrelation function (PACF) helps in identifying the or-
ders AR( p) and MA(q). In addition, more objectively defined
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criteria such as Akaike information criterion (AIC), Hannon-
Quinn information criterion, Bayesian information criterion,
and final prediction error can also be used to identify the
correct orders p and q (Brockwell and Davis, 2002; Kumar and
Jain, 2009).

Autoregressive Conditional Heteroskedasticity

The ARCH model, which was first introduced by Engle
(1982) and later extended by many researchers, has been ex-
tensively applied by Bollerslev et al. (1992), Bera and Higgins
(1993), and Diebold and Lopez (1995). In contrast with the
aforementioned historical volatility models, the ARCH model
and its modifications do not use the sample standard devia-
tions; they formulate conditional variance (ht) of asset returns
using the maximum likelihood procedure, which is illustrated
by first defining rt as follows:

rt¼ lþ et, (2)

et is defined as

et¼
ffiffiffiffi
ht

p
zt (3)

where l¼ etd
1=2
0 ; d0 = zdt; and zt is white noise, zt * D(0,1).

The distribution D is often assumed to be normal; the
process zt is scaled by ht, a conditional variance that in turn is a
function of the previous square of residual returns. In the
ARCH(q) process proposed by Engle (1982),

ht¼wþ+q
j¼ 1aje

2
t� j (4)

Conditions w > 0 and aj ‡ 0 are set to ensure strictly positive
variance. Typically, q is of high order because of the phe-
nomenon of volatility persistence in financial markets. From
Equation (4), ht is known at time t - 1. So the ‘‘one-step ahead’’
forecast is readily available. The ‘‘multistep ahead’’ forecasts
can be formulated by assuming

E[e2
tþ s]¼ htþ s (5)

The unconditional variance, rt, is defined as

r2¼ x

1�+q
j¼ 1aj

(6)

The process is covariance stationary if and only if the sum
of the autoregressive parameters, +q

j¼ 1aj, is less than one
( < 1).

FIG. 1. Geological location of the Feitsui reservoir watershed.
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Generalized ARCH

The high-order ARCH(q) process is more parsimonous to
model volatility than a GARCH (Bollerslev, 1986) known as
GARCH( p,q), in which additional dependencies are permit-
ted on p lags of past h as shown as follows:

ht¼xþ +
p

i¼ 1

biht� i +
q

j¼ 1

aje
2
t� j (7)

where ht is in general a nonnegative random variable, and
x > 0.

For GARCH(1,1), constraints a1 ‡ 0 and b1 ‡ 0 are needed
to ensure that ht is strictly positive. For higher orders of
GARCH, the constraints on bi and aj are more complex. The
unconditional variance r2 is expressed as

r2¼ x

1�+p
i¼ 1bi�+q

j¼ 1aj

(8)

Additionally, the GARCH( p,q) model is covariance stationary
if and only if

+p
i¼ 1biþ+q

j¼ 1aj < 1 (9)

VARMA–GARCH model

The VARMA–GARCH model of Ling and McAleer (2003)
assuming symmetry in the effect of positive and negative
shocks on the conditional volatility is given by

Yt¼E(YtFt� 1)þ et (10)

C(L)(Yt� l)¼F(L)et (11)

et¼Dtgt (12)

Ht¼Wtþ +
r

l¼ 1

Al e
/

t� 1þ +
s

l¼ 1

BlHi, t� j (13)

where Yt¼ (y1t, . . . ymt)
0, Ft - 1 is the past information available

up to time t, m is the total of returns to be analyzed, and t = 1, .,
m. L is the lag operator; C(L)¼ Im�C1L� . . . �CPLP,
F(L)¼ Im�F1L� . . . �FqLq, and polynomials in L.
Dt¼diag (h

1=2
i, t ), gt¼ (git, . . . , gmt)

0 is a sequence of indepen-
dently and identically (iid) random vectors. Ht¼ (h1t, . . . , hmt)

0,
W1¼ (x1t, . . . , xmt)

0, e
/

t¼ (e2
it, . . . , e2

mt)
0, Al, and Bl are m · m

matrices with typical elements aij and bij, respectively, for i,
j = 1, ., m. Al and Bl represent the ARCH effect and GARCH
effect, respectively. Spillover effects or the independence of the
conditional variance between West Texas Intermediate (WTI)
crude oil future returns and oil company stock returns are gi-
ven in conditional volatility for each return in the portfolio.
Based on Equation (11), the VARMA–GARCH model also as-
sumes that the matrix of conditional correlations is given by
E(gtg

0
t)¼G. If m = 1, Equation (12) reduces to the univariate

GARCH model of Bollerslev (1986):

ht¼xþ +
p

i¼ 1

aie
2
t� iþ +

q

i¼ 1

bih
2
t� i (14)

An extension of the VARMA–GARCH model to accom-
modate asymmetric impacts of the positive and negative

shocks is the VARMA–AGARCH model (McAleer et al., 2008)
that captures asymmetric spillover effects from each of the
other returns. The extension of (13) to accommodate asym-
metries with respect to it e is given by

Ht¼Wtþ +
r

l¼ 1

Al e
/

t� 1þ +
r

l¼ 1

ClI(gt� l) e
/

t� lþ +
s

l¼ 1

BlHi, t� l (15)

in which eitg
ffiffiffiffiffi
hit

p
for all i and t, Cl are m · m matrices and I(gt - 1)

is an indicator variable, and I(gt) = diag(I(gt)) is an m · m ma-
trix, such that,

I(git)¼
0, eit > 0
1, eit > 0

�
(16)

If m = 1, Equation (13) reduces to the asymmetric univariate
GARCH or the GJR model proposed by Glosten et al. (1992):

ht¼xþ +
r

j¼ 1

(ajþ cjI(gt� j))e
2
t� jþ +

s

j¼ 1

bjh
2
t� j (17)

If Cl = 0 with Al and Bl being diagonal matrices for all l, then
VARMA–AGARCH reduces to

ht¼xþ +
r

l¼ 1

alei, t� lþ +
s

l¼ 1

bjh
2
t� l (18)

which is the CCC model of Bollerslev (1990).

Essence of model development

Fat tail test. The investigation of time series empirical
distribution often leads to characteristics of fat tail test. Hence,
the assumption of a normal distribution for the water quality
data is not the optimal choice. Results of examining the
skewness, kurtosis, and Jarque-Bera normal distribution can
be used for determining whether the distribution of modeling
errors has fat tails.

Examination of the ARCH effectiveness. Before con-
ducting simulations using the time series combination of
ARCH and GARCH models, the process of model calibration
must be carried out beforehand in order to confirm that the
residual series is not related to the first order series, known as
the white noise, to assure an appropriate model. Next, the
residual square examination is used to determine whether the
model has the (G)ARCH effect. In this article, the Q statistics
proposed by Ljung-Box has been used to examine whether the
residual has high-order autocorrelation. Only the model that
has ARCH effectiveness can be used to carry out iterative
nonlinear calculations for estimating model parameters.

Impact response analyses

The impact response analysis is used in the VAR model for
studying the dynamic response pattern exhibited by all other
variables when one variable is subject to exogenous shock or
impulse. The development of impulse response analysis
model is shown as follows (Pesaran and Shin, 1997):

The general form of VAR(m) model is

F(L)yt¼Cþ et (19)

where yt is an n · 1 vector consisting of n variables; et is a series
of independent dynamic vibration independents with normal

230 WU ET AL.



distribution. The average is ‘‘zero,’’ and the covariance matrix
is Se. C is an n · 1 vectors with fixed values.

F(L)¼ I�F1L� . . . :�FmLm (20)

The various FS are represented by n · n matrices.
Assuming that all roots of jF(L)j fall outside the unit circle,

the formula can be converted into Equation (21):

yt¼Cþ +
m

i¼ 1

Fiyt� iþ et (21)

It is further converted and expressed as the MA model:

yt¼Cþ +
1

i¼ 0

Oiet� i (22)

where C is an (n · 1) constant matrix, Ui is an (n · n) matrix,
and U0 is a unit matrix. Equation (18) indicates that every
variable in the matrix can be expressed by the et of itself or
other variables in the matrix.

Results and Discussion

Selection and manipulation of water quality data

Before the verification analysis of conditional heterogeneity
variables is conducted, the water quality data collected at the
six monitoring stations in the watersheds of northern Taiwan
are classified into three major factors using the factor analyses
in multiple statistical analyses. Factors with more significance
are then selected as the targets for conducting investigations;
they are termed ‘‘organic pollution factors’’ or factors related
to pollution caused by organic pollution factor including DO,
BOD, and NH3-N.

The water quality monitoring data cover the period from
January to July 2010. At first glance, the data may appear in-
sufficient to cover a complete water quality record for the whole
year. Because the watershed is located in subtropical region
with the annual wet period between April and September and
the annual dry period between December and March next year,
the data for the specific period are sufficient to represent the
typical water quality variation so that the correlations among
BOD, DO, and NH3-N can be fully grasped during the analyses.
The data that show seasonal and periodic variations are nor-
malized using the following formula before the simulation of
water quality parameters is conducted:

Zv, t¼
Yv, t� lt

rt
t¼ 1, . . . , w

where Yv,t are the original data; lt, rt are the periodic average
and standard deviation for the data collected during the 1 – w
periods.

Evaluation of water quality simulation results

The results of GARCH verification analyses confirm that
using the three water quality parameters, that is, DO, BOD
and NH3-N, is appropriate.

Analyses of basic characteristics. Table 1 shows the basic
characteristics of the three water quality parameters that have
been evaluated for average, standard deviation, skewness,
kurtosis, and Jarque-Bera normal distribution. First, as the
skewness is concerned, the results indicate that BOD and NH3-

N show skew on right with positive value; BOD has the highest
skewness of 2.93. This indicates that the BOD data series con-
tains relatively more individual data with sudden increase in
value. Hence, in these watersheds, BOD and NH3-N have larger
variations with respect to seasons, and BOD is more susceptible
to changes of seasons. Fanchiang (2000) pointed out that the
total removal efficiency of the receiving body BOD5 may reach
65%–75% in spring and summer and 48%–51% in autumn and
winter, indicating that the reduction of stream BOD is affected
by the variation of temperature due to changes of seasons as
seen by a right skewness of the BOD data. For DO, although
both DO and water temperature vary regularly with respect to
changes of seasons, the overall change degree of water quality
for the watershed located in mountainous region is not as ob-
vious as for the downstream watershed. The extent of DO
variation for the former is not obvious, because its skewness is
noticeable. All three water quality variations have higher kur-
tosis than the normal distribution, which has kurtosis of 3, in-
dicating that these three water quality parameters have the
characteristics of time sequence. Table 1 shows that BOD has a
relatively higher kurtosis than the other two water quality pa-
rameters. As mentioned earlier, both BOD and NH3-N have
relatively large variations during changes of seasons; hence,
they have higher kurtosis than DO. As DO is concerned, it has
similar kurtosis and skewness as mentioned in previous sec-
tions, revealing that the degree of seasonal DO variation is not
obviously seen. Additionally, the observations that the DO
critical value (degree of freedom = 2, and v2

0:05, 2¼ 5:99) is greater
than the significance level of 5% for a normal distribution
support the hypothesis of rejecting the normal distribution for
DO (Jarque and Bera, 1980, 1987). Further, the DO distribution
has the characteristics of double thick-tail. These observations
confirm that concentrations of the aforementioned water qual-
ity parameter series are easily influenced by seasons so that
their concentrations vary significantly. Among the three water
quality parameters, BOD has relatively the highest variations.
Hence, this test confirms that BOD is more susceptible to sea-
sonal change than NH3-N and DO.

Ljung-box sequential examination. Prior to using the
ARCH and GARCH models, the residual in the regression
model is first examined using the Ljung-Box examination
(L-B-Q(K)) method to test whether it has the ARCH or
GARCH effect; the results are listed in Table 2. All the

Table 1. Basic Characteristics

of Organic Pollution Factors

DO (mg/L) BOD (mg/L) NH3-N (mg/L)

Mean 6.713153 0.989342 0.069715
Median 6.800000 0.800000 0.040000
Maximum 8.700000 7.200000 0.450000
Minimum 3.400000 0.200000 0.010000
Std. Dev. 0.829993 0.802781 0.063600
Skewness - 0.385656 2.937852 2.407225
Kurtosis 3.36178 18.64152 10.88435
Jarque-Bera 8.288771 3268.743 999.2112
Probability 0.015853 0.000000 0.000000
Sum 1886.500 278.0000 19.5900
Sum Sq. Dev. 192.8886 180.44880 1.132577
Observations (n) 281 281 281
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examination statistics for L-B-Q(K) are smaller that the critical
value so that null hypothesis, which is not conforming to al-
ternative hypothesis, cannot be rejected. Hence, residuals of
the various number sequences do not have serial correlation;
this confirms to the phenomenon of white noise so that the
model disposition is considered appropriate.

Examination of ARCH effectiveness. The Lagrange
Multiplier (LM) statistics (Lee et al., 2007) can be applied to
examine whether the ARCH effect exists in a number se-
quence. The LM statistics is TR2 with T being the number of
samples, and R2 being the determination coefficient value
obtained using the ordinary least squares (OLS) regression;
TR2 obeys the chi-square distribution with p degree of free-
dom. When the model LM statistics is obvious, the ARCH
effect exists in the number sequence. The statistics of the three
water quality parameters listed in Table 3 indicates that the
conditional variance of all three parameters show strong
ARCH effect with all TR2 values less than 5% indicating
‘‘obviousness.’’ Hence, the ARCH effectiveness is appropriate
for explaining these three water quality parameters.

Selecting VARMA to cope with GARCH. In this article,
various combinations of the vector model VARMA coped with
ARCH–GARCH model have been tested to select the optimum
VARMA( p,d,q)–GARCH( p,q) model for conducting the simu-
lation of water quality. The results will then be appropriate
for depicting the water quality parameters dependence among
the various organic pollution factors. Table 4 lists the analysis
results for matching VARMA with the GARCH model. Among
the hundreds of various combinations of vector models, one
set of the combinations, that is, VARMA(1,0,1)–GARCH(1,1),
has been selected as the most appropriate model for explaining
and depicting the time series dependence of the various
organic pollution factor, because this combination has the
smallest AIC and Schwartz criteria (SC).

Simulation results using the VARMA coupled GARCH
model. Table 5 lists the time series correlation and depen-
dence among BOD, DO, and NH3-N that have been simulated
using the optimum VARMA(1,0,1)–GARCH(1,1) model. Nu-

merous matching models have been tested in this research,
and only the models that are the most appropriate for con-
ducting the studies are explained in the following sections.

As the DO is concerned, the simulated results shown in
Table 5 reveal that the current stream DO will affect the for-
mation of BOD concentration (t-statistics of b0 of 3.14 is greater
than 1.96, indicating ‘‘significant’’). That is, the magnitude of
current stream DO variation can be applied for predicting the
current concentration of BOD; this can also be verified by the
results obtained using the BOD equation, where DOi is the
initial sample DO, DOf is the sample DO after 5-day incubation
period, and P is the dilution factor. In Table 5, b0 value of the
current DO is - 0.71, indicating that when the stream water
contains relatively high DO, the BOD can be completely de-
graded by consuming and reducing the stream DO. Ad-
ditionally, the one time lag and two times lag DO values will
also influence the concentration of BOD formation (t-statistics
of b1 and b2 are 3.59 and - 2.43, respectively, both being greater
than 1.96, indicating ‘‘significant’’). Further, the one time lag
and two times lag DO values influence the current BOD more
than the current DO [both b1(1.20) and b2(0.95) have a greater
coefficient than b0( - 0.71)]. The above observations illustrate
that aerobic microbes consume more DOs during one time lag
and two times lag than the current consumption of DO. This is
also confirmed by the first derivative of the oxygen sag curve
based on Streeter-Phelps equation (Lo, 2004).

The current BOD is mostly caused by the degradation of
carbonaceous organic matter; it is also known as the carbo-
naceous BOD (BODC), whereas the oxygen consumption in
the nitrification (or oxidation) of NH3-N contributes to ni-
trogenous BOD (BODN). The stream total BOD is the sum of
BODC and BODN. Because nitrifying microbes have smaller
specific growth rates than normal BODC oxidizing microbes,
the reduction of BODN comes after the reduction of BODC.
When NH3-N is concerned, the simulated results listed in
Table 5 indicate that the current NH3-N concentration cannot
be used for predicting the current concentration of carbona-
ceous BOD formation (t-statistic of c0 being 0.97 is smaller
than 1.96, indicating ‘‘not significant’’). However, both the one
time lag and two times lag NH3-N concentrations affect the
nitrogenous BOD formation (t-statistic of c1, and c2 being 2.58,
and - 2.26, respectively, which are greater than 1.96, indi-
cating ‘‘significant’’). The above analyses show that the cur-
rent BODN concentration is influenced by the one time lag and

Table 2. Ljung-Box Serial Examinations

of Organic Pollution Factors

L-B-Q(K) DO BOD NH3-N
Critical value

v2
(0:05, k)

1 0.55 0.81 0.58 3.84
2 1.26 1.37 1.12 5.99
3 3.57 3.44 2.57 7.82
4 6.68 5.89 3.06 9.49
5 9.02 7.21 6.65 11.07
6 10.44 8.94 7.98 12.59
7 12.59 11.32 9.35 14.07
8 13.67 12.80 11.00 15.51
9 14.41 15.33 12.57 16.92
10 15.58 16.72 14.81 19.68
15 22.96 20.79 17.98 26.30
20 26.31 25.08 23.67 31.41

Rt = c + h Rt - 1 + et; a = 0.05.
DO, dissolved oxygen; BOD, biochemical oxygen demand; NH3-

N, ammonia nitrogen.

Table 3. Results of ARCH(q) Examination

of Organic Pollution Factors

Q (lagged
variables)

DO
(TR2)

BOD
(TR2)

NH3-N
(TR2)

Critical value
x2

(0:05, k)

1 71.59 18.82 53.20 3.84
2 88.06 24.45 64.74 5.99
3 98.86 30.84 81.00 7.82
4 113.47 33.90 94.32 9.49
5 134.11 39.82 100.32 11.07
6 147.88 49.81 143.17 12.59
7 167.43 56.33 153.89 14.07
8 189.05 69.97 170.65 15.51
9 223.32 75.21 187.58 16.92
10 255.87 88.26 201.99 19.68

All TR2 values are less than 5%, indicating ‘‘obviousness.’’
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two times lag NH3-N concentrations. This observation can be
explained based on the production of the decomposition of
the organic matter containing nitrogen. Right after the stream
is polluted by discharges of domestic wastewater, the current
oxidation does not occur immediately as seen in the t-statistics
of c0 that indicates ‘‘not significant’’; hence, the change of BOD
concentration is not obvious. After the majority of BOD is
degraded, organic nitrogen is then hydrolyzed into NH3-N,
which is then oxidized biologically into nitrite and nitrate to
further consume DO. Hence, the one time lag and two times
lag ammonia concentrations obviously influence the current
BODN concentration. Further, the one time lag NH3-N influ-
ences the current BOD more than the two times lag NH3-N,
showing that most one time lag NH3-N has been oxidized into
nitrite and nitrate nitrogen.

For BOD, it is more influenced during the one time lag
period (t-statistic of a1 being 9.62 is greater than 1.96, indicting
‘‘significant’’) than the two times lag period (t-statistic of a2 is
- 2.07, whose absolute value is greater than 1.96, indicting
‘‘significant’’). In other words, the results indicate that BOD
curve shows an initial microbial logarithmic growth so that
the BOD is rapidly reduced during the one time lag period.

However, the decomposition of organic matter during the
two times lag period obviously decreases, which lead to
slower final BOD increasing rate.

Predictive analyses using the VARMA(1,0,1)–GARCH
(1,1). Predicting future variations is very important in time
series model. In this study, the final 30 sets of data collected on
the three water quality items have been used for conducting
the time series simulating prediction using the VAR-
MA(1,0,1)–GARCH(1,1) model. The prediction results are
shown in Figs. 2–4. All three water quality parameters have
high coefficient of correlation r between the fitted and actual
values, that is, 0.813 for DO, 0.986 for BOD, and 0.905 for NH3-
N. Hence, these three water quality parameters have charac-
teristics of timer sequence so that they can be accurately
predicted using the GARCH model as developed in this re-
search.

Impact response analyses

Before the impact response analysis is conducted, the
number of period for the most appropriate lagged variable

Table 4. Results of the VARMA( p,d,q)–GARCH( p,q) Examinations of Organic Pollution Factors

ARCH ARCH(1) GARCH(1,0) GARCH(1,1) GARCH(1,2) GARCH(2,1)

VARMA AIC SC AIC SC AIC SC AIC SC AIC SC

VARMA(1,0,0) 2.761 2.765 2.563 2.449 2.551 2.603 2.696 2.761 2.372 2.370
VARMA(2,0,0) 2.653 2.608 2.338 2.361 2.552 2.604 2.696 2.762 2.568 2.534
VARMA(0,0,1) 2.097 1.996 2.470 2.296 2.668 2.719 2.553 2.541 2.517 2.558
VARMA(0,0,2) 1.896 1.895 2.508 2.448 0.116 - 0.065 2.004 2.179 2.001 1.996
VARMA(1,0,1) 2.810 2.862 1.281 1.372 - 0.230 - 0.165 2.364 2.442 - 0.073 - 0.106
VARMA(1,0,2) 2.816 2.798 2.797 2.685 2.430 2.495 1.753 1.790 2.282 2.185
VARMA(2,0,1) 2.799 2.557 2.658 2.650 2.224 2.374 2.364 2.442 2.097 2.016

VARMA, Vector Autoregressive Moving Average; GARCH, Generalized Autoregressive Conditional Heteroskedastic; AIC, Akaike
information criterion; SC, Schwartz criteria.

Values in boldface are the smallest AIC and SC values.

Table 5. Values of Parameters Used in Combining VARMA and GARCH(1,1) for Organic Pollution Factors

a0 a1 a2 b0 b1 b2 c0 c1 c2 d1 a0 a1 a2 b1

VARMA(1,0,0) - 0.56 - 1.00 1.03 0.55 0.88 0.62 4.65 - 4.65 0.27 0.06
t-statistic 1.91 0.27 - 0.24 1.37 - 2.65 - 1.23 1.23 3.99 0.54 - 1.12

VARMA(2,0,0) - 1.32 2.37 0.56 0.98 - 1.18 - 2.36 - 0.87 - 0.92 0.65 0.65 2.65 0.85 0.67
t-statistic - 0.88 2.01 1.09 - 2.37 0.54 1.33 0.67 1.01 1.22 0.99 2.12 - 0.23 1.03

VARMA(0,0,1) 1.10 0.76 0.54 1.11 1.56 - 0.76 1.64 1.26
t-statistic 2.45 - 2.27 - 0.29 - 0.24 2.33 0.24 - 0.68 2.38

VARMA(0,0,2) 0.92 1.03 1.28 0.06 0.34 1.00 0.11 1.32 1.09 1.23 0.56
t-statistic - 0.07 0.80 - 1.38 1.32 - 0.67 2.34 1.37 - 0.98 - 0.86 - 0.93 0.33

VARMA(1,0,1) 2.56 0.58 4.37 - 0.71 1.20 0.95 3.55 - 1.27 0.17 7.88 - 1.25 0.28 2.44
t-statistic 6.36 9.62 - 2.07 3.14 3.59 - 2.43 0.97 2.58 - 2.26 2.49 3.93 1.25 12.52

VARMA(1,0,2) 1.13 0.87 0.23 1.23 0.54 1.99 1.20 - 0.56 3.87 - 0.87 2.38 - 0.87
t-statistic 0.67 - 0.92 - 0.91 - 0.90 1.07 - 0.20 2.87 0.23 2.78 - 0.53 1.90 - 0.06

VARMA(2,0,1) - 2.54 - 1.02 1.96 - 0.07 1.76 - 2.23 1.09 2.36 - 0.54 2.22 1.75 - 0.54
t-statistic 1.14 - 0.99 2.67 0.14 0.87 1.78 - 0.07 1.09 0.71 - 1.45 0.76 0.27

BBOD¼ a0þ a1 BOD(t� 1)þ a2 BOD(t� 2)þ b0 DO(t)þ b1 DO(t� 1)þ b2 DO(0t� 2)þ c0 NH3-N(t)þ c1 NH3-N(t� 1)þ c2 NH3-N(t� 2)þ d1et� 1ht

¼ a0 þ a1e
2
t� 1 þ a2e

2
t� 2þ b1ht� 1

Values in boldface were used to execute the simulation.
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must be selected (Kane and Unal, 1990). The test results using
three unit root test models show that the original data for
these three water quality parameters cannot reject null pre-
sumption unit root; hence, they are nonstationary sequence. If
the number of period for the selected lagged variables is too
short, the resulting simplification will miss the specified re-
sults. On the contrary, if the number of period is too long, the
excessively detained parameters will cause inefficient esti-
mation of the parameters. Hence, a reliable criterion may be
determined for selecting an appropriate number of the lagged
period for effectively reducing estimation errors and raising
model efficiency.

The AIC proposed by Akaike is used in this article for se-
lecting appropriate lagged variables:

AIC(m)¼T · ln (SSR=T)þ 2m

where m is the number of variables in a model, T is the number
of samples, and SSR is the sum of error squares.

The AIC of lagged variable are first tested for selecting the
one with the smallest AIC value as the most appropriate
lagged variable to be used as the basis for analyses. The results
shown in Table 6 indicate that the lagged variable in the ninth
period has smaller AIC value. Hence, the ninth lagged vari-
able is selected for conducting the impact response analyses
for the three water quality variables. Figure 5 shows the im-
pact response when the three water quality parameters pro-
duce a unit variation.

For DO, Fig. 5A shows the impact responses of BOD and
NH3-N to variations of DO. The results indicate that BOD
responses immediately to changes of current DO. This ob-
servation conforms to the previous conclusion that the current
stream DO will influence the concentration of BOD formation
(t-statistic of b0 being 2.14 is greater than 1.96, indicating
‘‘significant’’). Further, Fig. 5A also reveals that the one time
lag DO influences BOD more than the current DO. This is also
similar to the previous conclusion concerning the influence of
DO on BOD as indicated by the VARMA(1,0,1)–GARCH(1,1)
model. NH3-N is not involved in the reaction as soon as the
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FIG. 2. Results of predicting DO using the VARMA(1,0,1)–
GARCH(1,1) model. DO, dissolved oxygen; VARMA, Vector
Autoregressive Moving Average; GARCH, Generalized Au-
toregressive Conditional Heteroskedastic.
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FIG. 3. Results of predicting biochemical oxygen demand
using the VARMA(1,0,1)–GARCH(1,1) model.
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FIG. 4. Results of predicting NH3-N using the VARMA
(1,0,1)–GARCH(1,1) model. NH3-N, ammonia nitrogen.

Table 6. Time Lag Akaike Information Criterion

Value of Organic Pollution Factor

Lag items AIC

1 - 2.75
2 - 3.03
3 - 2.98
4 - 3.05
5 - 3.32
6 - 2.54
7 - 2.56
8 - 3.07
9 - 3.61
10 - 3.49
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current DO varies, because NH3-N in water is oxidized into
either NO2 or NO3, so that the existence of NH3-N in the water
usually indicates little or no nitrification oxidation reactions.
Hence, the variation of current DO does not mean that NH3-N
is involved in the oxidation reaction; the current DO cannot be
based on for predicting the current NH3-N concentration. The
results shown in Fig. 5A reveal that oxidation of NH3-N does
not occur until the one time lag DO begins to change. The
oxidation of NH3-N leads to the formation of nitrites or ni-
trates; the change of NH3-N is also obviously influenced by
the change of the two times lag DO concentration.

For BOD, impact responses of DO and NH3-N to BOD
variation are shown in Fig. 5B. The figure reveals that DO
reduction is not obvious as soon as the current BOD starts to
change. Only when the microbial growth enters the log-phase,
DO consumption increases logarithmically so that BOD re-
duction becomes obvious. Additionally, NH3-N starts to react
when the current carbonaceous BOD is almost oxidized, be-
cause the nitrification oxidation reaction does not occur im-
mediately after the river has been freshly polluted by domestic
wastewater discharges. When BOD is observed later, NH3-N
has already been oxidized into nitrites or nitrates. Fig. 5B also
reveals that the total BOD is obviously affected by the current
carbonaceous BOD and the one time lag nitrogenous BOD
concentrations. Higher current BOD concentrations indicate
more serious pollution to consume more DO and a longer pe-

riod for the stream to recover. This observation is similar to the
results obtained using the VARMA(1,0,1)–GARCH(1,1) model
(t-statistic of a2 being negative is smaller than the t-statistic of
a1).

For NH3-N, the impact response of DO and BOD to vari-
ation of NH3-N is shown in Fig. 5C. The results indicated that
as soon as the NH3-N starts to change, the current DO does
not response until the one time lag is reached. As mentioned
earlier, NH3-N originates from the biological decomposition
of nitrogen-containing organic matter in the domestic waste-
water discharge. During the initial stage of NH3-N decom-
position, the consumption of DO is not obvious, and during
the one time lag period, NH3-N is further oxidized into nitrite
and nitrate to make the increase of DO consumption more
obvious. Nitrification usually occurs at the time when most
carbonaceous BOD is almost exhausted; hence, BOD does not
change obviously until when the current NH3-N begins to
change, which contributes to nitrogenous BOD (BODN).
These results are similar to the simulated results presented
earlier using the VARMA(1,0,1)–GARCH(1,1) model that the
current NH3-N concentration cannot be applied for estimat-
ing the current BOD (t-statistic of c0 being 0.97 is smaller than
1.96, indicating ‘‘not significant’’). Hence, the moment when
NH3-N starts to vary, the current NH3-N concentration does
not affect the current carbonaceous BOD concentration.
During the one time lag period, the current total BOD
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FIG. 5. Impact response analyses for organic pollution factors: (A) response to DO; (B) response to BOD; (C) response to
NH3-N. The dashed line represents the range of impact response degree. The gray line represents average value of impact
response degree.
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concentration is affected by the current NH3-N concentration,
which contributes to nitrogenous BOD.

Conclusion

Model analyses on the three water parameters (i.e., BOD,
DO, and NH3-N) that have been selected based on the result of
multivariable statistical analyses have been conducted using the
water quality monitoring data collected at six tributary streams
of Feitsui reservoir watershed. ARCH and GARCH effects exist
in the BOD, DO, and NH3-N, because these water quality pa-
rameters have a tendency to change with respect to changes of
seasons. In other words, a previous change of water parameters
will cause the current water parameters to vary accordingly.

The results obtained in this research show that both BOD
and NH3-N skew to the right; BOD has the highest skewness of
2.93, indicating that many individual BOD data in the series of
BOD data show the phenomenon of sudden increase. Hence,
the BOD and NH3-N in the watershed in question show great
seasonal variations. Based on the normal distribution statistics
( Jarque-Bera), their 5% levels are greater than the critical
boundary value (degree of freedom of 2 and x2

0:05, 2¼ 5:99). The
normal distribution shows the characteristic of double fat tails
to reveal that the water quality is easily influenced by seasons.

Results of simulation using the optimum matching VAR-
MA(1,0,1)–GARCH(1,1) model show that the one time lag and
two time lab NH3-N concentrations affect the current BOD.
This is seen by the statistical analysis results obtained in this
study that the total BOD is influenced by the current carbo-
naceous BOD (BODC) and one time lag nitrogenous BOD
(BODN). In this research, results of impact response studies
indicate that NH3-N does not significantly involve in the re-
action when DO starts to change because of the low specific
growth nature of nitrifying microbes. The presence of NH3-N
indicates that the current nitrification oxidation has not oc-
curred or has completed. Variation of DO in the water body
after most carbonaceous BOD has been oxidized indicates the
oxidation of NH3-N. Hence, the water body DO concentration
cannot be used for predicting the immediate current NH3-N
concentration. The research results also show that when car-
bonaceous BOD (BODC) starts to change, NH3-N is not sig-
nificantly oxidized. Later, the carbonaceous BOD does not
involve in the reaction when the current NH3-N concentration
is oxidized to contribute to the one time lag nitrogenous BOD.

The VARMA–GARCH integrated model proposed in this
research will have a complete grasp of instantaneous changes of
the time series water quality in the watershed so that the pre-
vious practice of ignoring the changes of series water quality is
improved. The results will provide valuable references for the
water quality authority to implement timely and effective water
management measures in response to changes of water quality.
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